Flexure of the Lithosphere

* What is the basic form of
flexure in the lithosphere ?

+ Some natural examples

+ What are the governing
equations for flexure ?

+ Work some examples ...

Figure 2.4 Conceptual comparison of local
isostasy versus flexure (regional isostasy).

A. In local isostasy, the lithosphere is
composed of separate blocks. As a load is
placed on the surface of the earth (B). only the
block immediately beneath the load subsides.

C. The earth (often) has lateral strength. as if
the blocks are attached to each other by
springs. Emplacement of a load on the surface

of the earth causes subsidence (D)._which is |
compensated over a larger area dug D
-

rigidity of the lithosphere.
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Flexural Subsidence Defined:

Distributed deflection, or bending, of the lithosphere in response to an applied
vertical load. Subsidence is distributed over an area wider than the load itself
because the lithosphere has flexural rigidity (lateral strength).

intraplate siress

bending mument-/,r d x4

included here

where x

D = flexural rigidity

Ddimq. i-i_ﬂ.’.

For the case of a two-dimensional load distribution, such as a linear
mountain belt or rift system, the elastic flexure equation reduces to:

—

+w -

= distance (normal to load axis) w = vertical deflection of the crust

d x2

N = intraplate force (positive if compressive) = horizontal load
p = vertical load distribution

P, or (p.p.)

p( x )j«— vertical load (5.2)

Angevine et al. (1990)

Key Assumptions when using this general equation:

1. The lithosphere has a “linear” — simple — elastic rheoclogy (define this term)

2. Two-dimensional load distribution (no significant changes in or out of x-section)

3. Elastic lithosphere is thin relative to horizontal dimensions

4. Vertical deflections are small relative to horizontal dimensions

5. Flexural rigidity (D) is constant across the x-section (this can be relaxed, then egn gets complicated)



Tectonic EXamples in Nature — 1: Loading at subduction zones

accretionary prism

s

D‘—IE+NJL$+&;--F{:J

iny

x
i
r
n
(]
[ ]
n
L)

Fig. 4.5 (a) Basthymetry of the Marana Trench (Watts & Talwani 1974) compared with that psedicied by the universal flexural
with %, tsken a5 55km and e, a5 0U5km (after Turcole & Schubert 1982, p. 130; © Cambeidge University Press, 2002). (b} Mon-
of the bathwmetric profile of the Mariana, Bonin and Central Aleutian oceanic trenches with a universal flexural
mmﬂs 1976:; meperinted with permission of Elsewvier). Deflection w i wcabed by the manimum elevation of the
bq..andh coondinate x s scaled by the horizontal distance to the crest of the bulge %, The x-coonrdinate is 2eroed a
firet node of the deflection x, whene w = 0 (et
Allen & Allen (2013)

Examples in Nature — 2: Loading at volcanic islands

aru the struciure of the sedementary indill of the moat
Eromth and flexure of the oceanic plate. Repeinbed

Fig. 84 Cross-section of Tenerife, Canary Blands, based on setsmic reflection data, showing deflection of the ocean crust
Allen & Allen {2013)

an each side of the (sland line boad, Youngest stratigraphy shows thickening owands boad, indicating active volcanic sland
from Weas ef al, (1997, with permission of Elsevier,




3. Apennine foredeep basin

Compare Flexural Profiles

Angevine et al. (1990);
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Figure 5.12 Defleclion of a basal Pliocane horizon (haavy curvea) in
the Apenning loredeep basin (from Royden and Karner, 1984).

{A) The tepographic load of the thrust belt is too small o explain the
chservad deflection. (B} A line load is applied at the end af a
hypothasized broken plate, under the Apennines, to make the
calculated {model} deflection maich the cbsarved deflection.

Jordan (1995)
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Fig. 9.4 Cross section of Lhe deformation of an elastic beam (alter
Beaumont, 1981). A) Configuration of load and beam. In situatkon with
o isostatic compensation. B) Regional compensation of a 50 km-wide
by 1 km-thick load. showing that the deflecied profile of the basin
depends on the Dexural rigidity. D. of the plate (units of D are Newton-
meters). C) Same deformation as in B, but with less vertical exaggera-

General Equations to calculate vertical deflection of an elastic plate.
Below are some parameters commonly used in solving this problem.

(from Turcotte and Schubert, 1982)

Effective elastic thickness (EET):

3 121D
_ 2 120+4%D
EET = \‘ =

Equivalent thickness
of elastic plate

v = Poisson's ratio (0.25)
E = Young's Modulus (7 x 1010 N/m?2)

4 4D _ 4

v Pag or

=

Flexural Parameter (a): o in units of distance (km) ... prop. to D (flex. rigidity)

— % 41
v (Pa-pw) g or

-4/ 4D
= . A
g (Paps) g

p, = 3300 kg/m*; p, = 2250 kg/m’

(depending on whether the deflection is filled with air (assume p,,, = 0), water (p_) or sediment (p,);

| Line Load (V): Vo=pLghAx | (see hand-written class notes for derivation)




Solve for vertical deflection of an elastic plate in response to an applied load.
Two popular solutions: (1) for an infinite plate, and (2) broken plate.

(1) Infinite Plate: continuous, unbroken under the load

(a) v
h i Infinite Plate
* X= ﬂ
s ek
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3 W, Vertical deflaction
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1 Allen & Allen (2013)

Turcotte & Schubert (1982)

(2) Boken Plate: Very weak or “broken” under the load
(plate has zero strength at x = 0)

(a)
-Vo Broken Plate
|
=0
— I —_— K = -xa X
ey i
-3 W, Vert.
(b) Wy = \"'{, A deflection at
4D line load
x/a.
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= {height of flex. bulge) 4
1- Allen & Allen (2013) Turcotte & Schubert (1982)




Solve an Example: Hawaiian islands load on ocean lithosphere

Calculate o, D, EET (from simple measurement of X,)

(1) Assume Infinite Plate (continuous beneath load)
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Hawaiian Islands Example
(2) Assume Broken Plate (zero strength beneath load)
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Calculating Crustal Loads
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